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Introduction
From controllability to stabilization

General presentation of the problem

From controllability to stabilization.

{
αt + αx = u(t)ϕ(x), x ∈ [0, L],
α(t, 0) = α(t, L), ∀t ≥ 0,

Controllable if

c√
1 +

∣∣∣2iπnL ∣∣∣2m ≤ |ϕn| ≤
C√

1 +
∣∣∣2iπnL ∣∣∣2m , ∀n ∈ Z,

ϕ ∈ Hm−1
per

∩Hm
(pw)

(m ≥ 1)
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Introduction
From controllability to stabilization

Results

Theorem (Rapid stabilization in Sobolev norms)

Let m ≥ 1. If the system is controllable in Hm
per and ϕ has extra

piecewise regularity, then the system can be stabilized
exponentially for any decay rate.

‖α(t)‖m ≤ CeλLe−λt‖α0‖m, ∀t ≥ 0,

Theorem (Finite-time stabilization in Sobolev norms)

Under the same conditions, there exists a feedback law that
stabilizes the system in finite time T = L.
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Introduction
From controllability to stabilization Pole-shifting in finite dimension

Strategy of proof for the transport equation

Stabilization of hyperbolic systems

Approaches to solve a stabilization problem:
Gramian approach (abstract), Riccati equations...
Lyapunov functionals: find a feedback that allows for a
(exponentially) decreasing energy functional

Backstepping
Volterra transformations: used on heat (Krstic et al.,
Coron-Nguyen), wave (Krstic et al.), KdV (Cerpa-Coron,
Shengquan Xiang), hyperbolic balance laws...
Fredholm transformations: Kuramoto-Shivashiinski
(Coron-Lu), KdV (Coron-Lu), Schrödinger (Coron et al.),
Transport (today).
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1 Introduction

2 From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation
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From controllability to stabilization Pole-shifting in finite dimension

Strategy of proof for the transport equation

Classical pole-shifting

Consider the finite-dimensional controllable control system

ẋ = Ax+Bu(t), x ∈ Cn, A ∈Mn(C), B ∈Mn,1(C).

Kalman condition: rank{AnB | n = 0, · · · , n− 1} = n.

Poleshifting: ∀P, ∃K ∈M1,n(C), χ(A+BK) = P .
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From controllability to stabilization Pole-shifting in finite dimension

Strategy of proof for the transport equation

Finite-dimensional backstepping

Another way of shifting poles: map

ẋ = Ax+B(Kx+ v(t))

into the stable system

ẋ = (A− λI)x+Bv(t).

The mapping T should be invertible and satisfy

T (A+BK) = AT − λT,
TB = B.

“Backstepping equations”
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Strategy of proof for the transport equation

Finite-dimensional backstepping

Proposition
If the system (6) is controllable, then there exists a unique pair
(T,K) satisfying conditions (7)

Controllability → basis property
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Strategy of proof for the transport equation

Finite-dimensional backstepping

(A− λI)T − TA = TBK,

TB = B.

Structural condition for Brunovski normal form (initialization
of iterative proof)
Sets a canonical form of the problem.

K is a parameter of T .
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Strategy of proof for the transport equation

Our system

Linear feedbacks:

〈α(t), F 〉 =
∑
n∈Z

Fnαn(t) =
∫ L

0
F̄ (s)α(s)ds

Closed-loop system:{
αt + αx = 〈α(t), F 〉ϕ(x), x ∈ [0, L],
α(t, 0) = α(t, L), ∀t ≥ 0.

Target system: {
zt + zx + λz = 0, x ∈ (0, L),

z(t, 0) = z(t, L), t ≥ 0.
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Strategy of proof for the transport equation

Kernel equations

T is a kernel operator: f 7→
∫ L

0
k(x, y)f(y)dy.

Operator equation Formal computations (IBP...)−−−−−−−−−−−−−−−−−−→ PDE for k(x, y).

(A−λI)T − TA
= TBK


kx + ky + λk +

∫ L

0
k(x, s)ϕ(s)dsK̄(y) = 0,

k(0, y) = k(L, y),
k(x, 0) = k(x, L).

TB = B

∫ L

0
k(x, s)ϕ(s)ds = ϕ(x), ∀x ∈ [0, L].
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From controllability to stabilization Pole-shifting in finite dimension

Strategy of proof for the transport equation

When is T invertible?

en := 1√
L
e

2iπn
L , kn := Te−n.

T invertible ⇔ (kn) is a basis.

k′n + λnkn = −K−nϕ

kn = −K−n
L

1− e−λL e
−λxe−n ? ϕ︸ ︷︷ ︸

Riesz basis of Hm
per

Controllability gives a basis property!
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From controllability to stabilization Pole-shifting in finite dimension

Strategy of proof for the transport equation

Invertibility and feedback

Tα =
∑
n∈Z

αnTen, α ∈ Hm
per

Invertible iff |Kn| ∼ nm (nmαn ∈ `2).

TB = B

TB = B → bi(Kei) = b̃i.

Controllability:

bi 6= 0→ Kei = b̃i
bi

But...ϕ /∈ Hm
per. Tϕ ?

Weak condition:

ϕ(N) Hm−1
per−−−−→

N→∞
ϕ, Tϕ(N) ⇀ ϕ

iff Kn := − 2
Lϕn

1− e−λL

1 + e−λL
∼ nm

Dirichlet convergence theorem
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From controllability to stabilization Pole-shifting in finite dimension

Strategy of proof for the transport equation

Almost done...

Kernel equations Derived formally using the TB = B

condition!
Basis property

Definition of (T,K) → weak TB = B!

Invertibility of T

Operator equality T (A+BK) = AT − λT on D(A+BK).

Well-posedness of the closed-loop system. Lumer-Phillips

theorem (study the regularity of the feedback law).
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Strategy of proof for the transport equation

Conclusions

Explicit feedback law.

Fn := H(λ)/ϕn
Not continuous (but simple). |Kn| ∼ nm

Works for any λ > 0.
Even works for λ = +∞.

H(λ) −−−→
λ→∞

−2/L

Works thanks to exact controllability.
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Even works for λ = +∞. H(λ) −−−→

λ→∞
−2/L

Works thanks to exact controllability.
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Next step



Ht + (HV )x = 0,

Vt +
(
gH + V 2

2

)
x

= −u(t)︸ ︷︷ ︸
acceleration

,

V (t, 0) = V (t, L) = 0, ∀t ≥ 0.

Linearised around (Hγ , V γ) := (H0 − γx, 0) (constant
acceleration):
ht + hγ(V )x = 0,
vt + g (h)x = −u(t),
v(t, 0) = v(t, L) = 0, ∀t ≥ 0.

Controllable. Stabilizable?

Christophe Zhang Internal stabilization of transport systems
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